Localized expression of an Ins(1,4,5)P3 receptor at the myoendothelial junction selectively regulates heterocellular Ca2+ communication.

نویسنده

  • Brant E Isakson
چکیده

Inositol (1,4,5)-trisphosphate [Ins(1,4,5)P(3)] originating in the vascular smooth-muscle cells (VSMCs) has been shown to modulate the Ca(2+) stores in endothelial cells (ECs). However, the reverse is not found, suggesting that Ins(1,4,5)P(3) movement might be unidirectional across gap junctions at the myoendothelial junction (MEJ), or that distribution of the Ins(1,4,5)P(3) receptor [Ins(1,4,5)P(3)-R] is different between the two cell types. To study trans-junctional communication at the MEJ, we used a vascular-cell co-culture model system and selectively modified the connexin composition in gap junctions in the two cell types. We found no correlation between modification of connexin expression and Ins(1,4,5)P(3) signaling between ECs and VSMCs. We next explored the distribution of Ins(1,4,5)P(3)-R isoforms in the two cell types and found that Ins(1,4,5)P(3)-R1 was selectively localized to the EC side of the MEJ. Using siRNA, selective knockdown of Ins(1,4,5)P(3)-R1 in ECs eliminated the secondary Ins(1,4,5)P(3)-induced response in these cells. By contrast, siRNA knockdown of Ins(1,4,5)P(3)-R2 or Ins(1,4,5)P(3)-R3 in ECs did not alter the EC response to VSMC stimulation. The addition of 5-phosphatase inhibitor (5-PI) to ECs that were transfected with Ins(1,4,5)P(3)-R1 siRNA rescued the Ins(1,4,5)P(3) response, indicating that metabolic degradation of Ins(1,4,5)P(3) is an important part of EC-VSMC coupling. To test this concept, VSMCs were loaded with 5-PI and BAPTA-loaded ECs were stimulated, inducing an Ins(1,4,5)P(3)-mediated response in VSMCs; this indicated that Ins(1,4,5)P(3) is bidirectional across the gap junction at the MEJ. Therefore, localization of Ins(1,4,5)P(3)-R1 on the EC side of the MEJ allows the ECs to respond to Ins(1,4,5)P(3) from VSMCs, whereas Ins(1,4,5)P(3) moving from ECs to VSMCs is probably metabolized before binding to a receptor. This data implicates the MEJ as being a unique cell-signaling domain in the vasculature.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Intercellular communication between follicular angiotensin receptors and Xenopus laevis oocytes: medication by an inositol 1,4,5- trisphosphate-dependent mechanism

In Xenopus laevis oocytes, activation of angiotensin II (AII) receptors on the surrounding follicular cells sends a signal through gap junctions to elevate cytoplasmic calcium concentration ([Ca2+]i) within the oocyte. The two major candidates for signal transfer through gap junctions into the oocyte during AII receptor stimulation are Ins(1,4,5)P3 and Ca2+. In [3H]inositol-injected follicular ...

متن کامل

Thyrotropin-releasing hormone activates a [Ca2+]i-dependent K+ current in GH3 pituitary cells via Ins(1,4,5)P3-sensitive and Ins(1,4,5)P3-insensitive mechanisms.

The role of Ins(1,4,5)P3 in receptor-induced Ca2+ mobilization in pituitary cells was studied at the single-cell level. Experimental strategies were developed which allowed a comparative analysis of the effects of Ins(1,4,5)P3 with those of receptor activation under identical conditions. These include microfluorimetry as well as a novel technique which permits the controlled and rapid applicati...

متن کامل

Ca2+ and inositol 1,4,5-trisphosphate-mediated signaling across the myoendothelial junction.

Second messenger signaling between endothelial cells (ECs) and vascular smooth muscle cells (VSMCs) is poorly understood, but intracellular Ca2+ concentrations ([Ca2+]i) in the 2 cells are coordinated, possibly through gap junctions at the myoendothelial junction. To study heterocellular calcium signaling, we used a vascular cell coculture model composed of monolayers of ECs and VSMCs. Stimulat...

متن کامل

Structural analogues of D-myo-inositol-1,4,5-trisphosphate and adenophostin A: recognition by cerebellar and platelet inositol-1,4,5-trisphosphate receptors.

Adenophostins A and B, which are metabolic products of the fungus Penicillium brevicompactum, are potent agonists at the D-myo-inositol-1,4,5-trisphosphate [Ins(1,4,5)P3] receptor. In the current study, adenophostin A was approximately 50-fold more potent than Ins(1,4,5)P3 at both releasing Ca2+ from the intracellular stores of permeabilized platelets and displacing [3H]Ins(1,4,5)P3 from its re...

متن کامل

Inositol 1,3,4,5-tetrakisphosphate stimulates calcium release from bovine adrenal microsomes by a mechanism independent of the inositol 1,4,5-trisphosphate receptor.

In bovine adrenal microsomes, Ins(1,4,5)P3 binds to a specific high-affinity receptor site (Kd = 11 nM) with low affinity for two other InsP3 isomers, Ins(1,3,4)P3 and Ins(2,4,5)P3. In the same subcellular fractions Ins(1,4,5)P3 was also the most potent stimulus of Ca2+ release of all the inositol phosphates tested. Of the many inositol phosphates recently identified in angiotensin-II-stimulate...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of cell science

دوره 121 Pt 21  شماره 

صفحات  -

تاریخ انتشار 2008